msﬁﬁﬂ“ﬁﬁﬂﬁﬁ

(1% FROM DARIHESS TO =l |
i‘ ;
RASANS

E10 e
NA

MECHANICAL ENGINEERING DEPARTMENT

NIT SRINAGAR, J&K

SUBJECT: MECHANICS OF MATERIALS || SEMESTER: 4™ (Spring)

COURSE INCHAGRE: DR. M. MURSALEEN

CLASS-NOTES




Enerqy Methods

Strain Energy

Strain Energy of the member is defined as the internal work done in defoming the body by the action of externally
applied forces. This energy in elastic bodies is known as elastic strain energy :

Strain Energy in uniaxial Loading

Fig .1

Let as consider an infinitesimal element of dimensions as shown in Fig .1. Let the element be subjected to normal
stress oy.

The forces acting on the face of this element is ox. dy. dz
where
dydz = Area of the element due to the application of forces, the element deforms to an amount = ex dx

LI & = strain in the material in x — direction

_ Change in length
Orginal in length

Assuming the element material to be as linearly elastic the stress is directly proportional to strain as shown in Fig . 2.



- Complementary
energy

Strain energy

Y

ex
Fig .2
~.UFrom Fig .2 the force that acts on the element increases linearly from zero until it attains its full value.
Hence average force on the element is equal to %2 ox . dy. dz.
. Therefore the workdone by the above force
Force = average force x deformed length
=% ox. dydz . ex . dx

For a perfectly elastic body the above work done is the internal strain energy “du”.

du= %sxdydzex dx A
_ 1
= 5% dxdydz
_ 1

du= EUI e, dv|l L (3

where dv = dxdydz
= Volume of the element

By rearranging the above equation we can write

du _ 1
U-:. = E = ng £, I:*'l:l

The equation (4) represents the strain energy in elastic body per unit volume of the material its strain energy —
density ‘o' .

From Hook's Law for elastic bodies, it may be recalled that



du _ o Ee,?
Uy=s—=2==2| 5
°dv 2E 2 =)
2
U= | Sodv B)
"l

In the case of a rod of uniform cross — section subjected at its ends an equal and opposite forces of magnitude P as
shown in the Fig .3.

- P
A
Fig .3
L
2
] F
L= j%dv UI:E
"l
L
P2
LJ=I = A dv =Adx = Elernent volume
ZEA

A =Area of the bar.
L= Length of the bar

U A7)

" 2AE

Modulus of resilience :

N sl

Modulus of resilience




Fig .4

Suppose ‘ oy’ in strain energy equation is put equal to oy i.e. the stress at proportional limit or yield point. The
resulting strain energy gives an index of the materials ability to store or absorb energy without permanent deformation

EZ

uy:j% =)

So

The quantity resulting from the above equation is called the Modulus of resilience

The modulus of resilience is equal to the area under the straight line portion ‘OY" of the stress — strain diagram as
shown in Fig .4 and represents the energy per unit volume that the material can absorb without yielding. Hence this is
used to differentiate materials for applications where energy must be absorbed by members.

Modulus of Toughness :

A modulus of
c toughness
Rupture
€r
Fig .5

Suppose ‘€' [strain] in strain energy expression is replaced by er strain at rupture, the resulting strain energy density
is called modulus of toughness

F 2
U=IEqu=E? dv

o

2
_Eer”

Ll
2

(9

From the stress — strain diagram, the area under the complete curve gives the measure of modules of toughness. It is
the materials.

Ability to absorb energy upto fracture. It is clear that the toughness of a material is related to its ductility as well as to
its ultimate strength and that the capacity of a structure to withstand an impact Load depends upon the toughness of
the material used.

ILLUSTRATIVE PROBLEMS

1.  Three round bars having the same length ‘L' but different shapes are shown in fig below. The first bar has a
diameter ‘d' over its entire length, the second had this diameter over one — fourth of its length, and the third



has this diameter over one eighth of its length. All three bars are subjected to the same load P. Compare the
amounts of strain energy stored in the bars, assuming the linear elastic behavior.

/54449474 /191 W/ /114

-« 3d 3d

s el iide . __f__ __i__

L/4 — d L/8

4 R

‘P ‘P 'e

Solution :

1.The strain Energy of the first bar is expressed as
_PAL
' 2EA
2.The gtrain Energy of the secaond bar is expressed as
PHLAY PRELA) PR
= + =
2EA 2E5A BEA,

3.The strain Energy of the third bar is expressed as
] _P*(Lss) P(7L/B)
TU2EA ZE(9A)

PIL

U [ —
¥ oEA
20
=21
g

From the above results it may be observed that the strain energy decreases as the volume of the bar increases.

2. Suppose a rod AB must acquire an elastic strain energy of 13.6 N.m using E = 200 GPa. Determine the
required yield strength of steel. If the factor of safety w.r.t. permanent deformation is equal to 5.



d=20 mm

"%

Solution :

Factor of safety = 5

Therefore, the strain energy of the rod should be u = 5[13.6] = 68 N.m
Strain Energy density

The volume of the rod is

20 % 1.5 w107
= 471 % 10° mm®

Yield Strength :

As we know that the modulus of resilience is equal to the strain energy density when maximum stress is equal to oy .

z
U:UL
2E

2
0.144 =

v
2 % (200 % 10%)
o, = 200Mpa

It is important to note that, since energy loads are not linearly related to the stress they produce, factor of safety
associated with energy loads should be applied to the energy loads and not to the stresses.

Strain Energy in Bending :

|

Fig .6



Consider a beam AB subjected to a given loading as shown in figure.
Let
M = The value of bending Moment at a distance x from end A.

From the simple bending theory, the normal stress due to bending alone is expressed as.

Pl Y

U:_
I

Substituting the above relation in the expression of strain energy

-~ 2
e U= | S dy
12E

2,2
= IthIFE ch (10

Substituting dv = dxdA
Where dA& = elemental cross sectional area

2
MEE'; — iz a function of ¥ alone
2El
Mow substitiuting for dy in the expression of LL
L
it
U= _[_[ T4A o (11
IQEF ! i
i
We know -['_-,-'zdﬂx represents the morment of ineria ' of the cross-section about its neutral axis.
2
U= Im—dx ..... (12)
2E
i

ILLUSTRATIVE PROBLEMS

1. Determine the strain energy of a prismatic cantilever beam as shown in the figure by taking into account only
the effect of the normal stresses.

Solution : The bending moment at a distance x from end
A is defined as

fl = —Fu



Substituting the above value of M in the expression of strain energy we may write

L

pi}{i
u= |25 4
Iza *

1]

L P2L3
=

j El

I

Problem 2 :

a. Determine the expression for strain energy of the prismatic beam AB for the loading as shown in figure
below. Take into account only the effect of normal stresses due to bending.
b. Evaluate the strain energy for the following values of the beam

P =208 KN ;L =3.6 m=3600 mm
A=09m=90mm ;b=2.7m=2700 mm

E =200 GPa: |l =104 x 10 mm*

P
D
| |
«—— d > b
L »
Solution:
P
A D B
/ [
P [ a e b . P,
Ra=— Re®= T
/'\-\
/M1 N = X




Bending Moment : Using the free — body diagram of the entire beam, we may determine the values of reactions as
follows:

Ra=Po/LRg=Ps/L

For Portion AD of the beam, the bending moment is

- i) MF%"

For Portion DB, the bending moment at a distance v from end B is

e k] ) e [

¥ )

[-.,-12:

|

Strain Energy :

Since strain energy is a scalar quantity, we may add the strain energy of portion AD to that of DB to obtain the total
strain energy of the beam.

U'=Uap +Upg
a b
b, M,
=14 2 4
Iza }”J‘za !
0 0
2 7 b 7
:L P_t'}{ d}{+LI P_a'.,.' dx
2El L 2El L
0 0
1 F'E[hzag , @b’

CZEIE| 3 3

I

_ Fa I:‘u? (2 +b)
BEIL

Sincefa+h) =L
pZ 22

~ EEIL

Ll

b. Substituting the values of P, a, b, E, I, and L in the expression above.

3 : :
U= (200 107) =200 «(2700) =5 274107 KN m

G200 % 10%) %0104 x10%) % (3600)
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Ex: Stress strain diagram for aluminium alloy is shown in figure. If the
specimen of the material is stressed to 600 MPa. Determine the

permanent strain that remains in specimen when the load is released. Also
calculate the modulus of resilience both before and after the load application?

Sol:

6in

MPa

OA & BC are parallel
600

450

0.006

0.023

Slope = E = 450/0.06 = 75000MPa

Also, E=600/(0.023 -epc) =75000

€oc =0.015

Unies = = * 450 *0.006 = 1.35 MJ/m”

Usnat =5* 600 * 8 * 10° =2.40 MJ/m”
« Q-W=E,-E,

Y4

./7

e
T BL}
H#E=U + B.P.E + B.K.E

e Strain Energy - stress strain distribution.




¥K

OTxx dx
ox

The increment of work done by the stresses 7, on face 1 and by 7., +

on face 2 during infinitesimal displacement du, at face 1 and d [ux + %dx]

at face 2 is:

0T,y ou,
W =—1,.du,dydz + (Txx + Fx dx) d [ux + Fm dx] dydz

ou,
0x dx]

+ B, dxdydz d [ux +a

Using body force component B, and a is some fraction

On solving and neglecting higher order terms we get,

w={r,, d(32) + 0 (522 + B, ) du, } dud, d,

Ju el . ot
Replace —= = € and also equilibrium requirement: =+ B, =0

W=t,,d€E,,.dV

Considering normal stresses and strains in the Y and Z directions; similar
expressions for work increments done on the elements can be obtained.

For a state of stress on the element wherein 7,,, 7,, and 7, act
simultaneously, we may compute the work increment on the element by
superposing the independent work increments of the three directions.

For an elastic material, this represents the strain energy increment of the
element resulting from normal strains.

(Txxd€xxt Ty dEy, + T,,dE,,)dV

As next step, let us consider strain energy associated with shear strain




Work increment:

0Ty Yy
(Txy + _Oy dydyy, ) dxdzd (yxy + Wﬁ Jdx | dy
B=0atLSandpB=1atRS

Vxy 0Ty

0t V.
TayAVxy + Tayd (W) B.dx + % dydy,, + a—;yd(ﬂ

0x

Ypdxdy

The expression for increment of work done by shear stress on element is then

(Txydyxy)dxdydz

Similarly, considering the increments of work done by shear stress 7xz & 7z
and noting we can superpose the results for an isotropic elastic materials, the
total strain energy increment resulting from shear deformation for the
element is then

[Txydyxy-l- szdyxz+Tyzdyyz ]dV

Since normal stresses do no work as a result of shear strains and shear stresses
do no work as a result of normal strain.

For elastic isotropic material, the total strain energy increment for an element
under general state of stress

dU = (Tyx €y + Tyy A€y + T4, dE 1o+ Ty AViy t Ty, Ay HT,,dY,)dV

dLl:ZiijijdEij




For linear, elastic and Isotropic material:

dy = XX[erX (dyy + dry] + [d'tyy (AT + dTyy] + 22 == [T -W(d T+ Ay +%‘yd‘txy+

Txz
?dTXZ + TdTyZ

dl—l=1[Txde+T dy+Tzde] -t [TxxdT +Txxdrzz]+ [T dTX +T£ dTXZ+TYZdTYz]
E yy E yy Y ¢

1.2 2 2
HU= Tt Ty 2] [TxxTyyﬂzszxﬂWTzz] *2C — [’ Wy Tl

En
21+ (1-2p)

# =

2 2 2 2 G, 2 2 2
(Exx+€yy+€zz) + G(E xxH€ yy'l'E zz)+E (Y xy+Y yz+Y xz)

Ex: What is the strain energy per unit volume of a point for a linear, elastic

material having at this point the following state of stress?

1000 -500 2000
T|J= <_500 2000 _4‘00> Psi G=15x106psi, E=3x106psi

2000 —400 1000
Sol:  E=2G (1+|)
30x10°= (15x10°) (2) [1+J]
W +1=1
L =0
1,{=—(3x10 ) [(1000)°+(2000)*+(1000) ]+ = x10°[(500)*+{2000)+(400)’]
U =1/60x10°[60x10°%+ (882x10%)]
U =1/60x10°[6+8.82]
| =0.247 Ib-in/in®

Ex: What is the S.E per unit volume at a point for linear, elastic material having
following:




0.001 —0.0005 0.003
€jj- (—0.0005 0.002  —0.002 Ge1x10 psig M =0.3
0.003  —0.002 —0.001
Sol:

E=2x10"[1.3]=2.6x10" Pa

1(2.6x10'1)(0.3)(0.002)?

= 11 5 ) )
U=z 3004 +10%[(0.001)2 + (0.002) + (0.001)?]

+ %x 10%1[(0.005)2 + (0.002)2 + (0.003)2]
Y =3% 10° + 6 X 105 + 2.65 X 10°

1 =3.55X 10°Nm/m3 - Energy per unit volume

Alternate method:
Tij = M1645 + 2Ge;

____Ep
T (14w (1-2p)

, =0.002, A=1x10"" Pa

1) Tax = (1.5 X 10')(0.002) + (2 x 10'1)(0.001)
=> Ty = 5% 108Pa

2) Tyy = (1.5x10")(0.002) + (2 x 10'")(0.001)
=> T,y =7% 10%Pa

3) Tz =1x108

4)  Tay =2 %x10"(—0.005) = —10°Pa

5) Tz =2 X 10'(—0.001) = 6x 10%Pa

6) Ty, =2x10'(0.002) = —4 x 10%Pa

-1 7 —4] X 108 Pa




1 0.3

= [25+49+1]1x10"°———> _x(354+5+47)
A X z6x 108 2.6 x 10™
1
x 10" + ———=[1+36+16] x 10™°
2% 10
Y = 14.42 x 10°> — 5.4 X 10° + 26.5 x 10°> Nm/m3
1 =3.55X 10°Nm/m?
e STRAIN ENERGY FOR VARIOUS TYPES OF LOADING:
1. AXIAL LOAD:
ok — 1 N
u fVZE dv < - >

NZ
U= [ 55z Adx

U NZL
" 2AE

Ex:

One of the two high-strength steel bolts A and B shown in Fig. is

to be chosen to support a sudden tensile loading. For the choice it is
Necessary to determine the greatest amount of elastic strain energy
That each bolt can absorb. Bolt A has a diameter of 0.875 in. for 2 in.
Of its length and a root (or smallest) diameter of 0.731 in. within the
0.25-in. threaded region. Bolt B has “upset” threads, such that the
Diameter throughout its 2.25-in. length can be taken as 0.731in. In
Both cases, neglect the extra material that makes up the threads. Take

Est=29(10% ksi & p,=44ksi




Sol:

Bolt A: If the bolt is subjected to its maximum tension, the

Maximum stress of p,= 44 ksi will occur within the 0.25-in. region.
This tension force is

0.731in.

2
Pmax=pyA=44ksi[n (22t ]=18.47kip

N2L N2[L, , L,
Up=g o =2 2 4 22
2AE  2E lA, A,

18.452 3.08
A

ST ]=o.023 Klb-in

T
4

BoltB:

Ug= N°L/2EA

Us = (18.46)2(2.25)/2*(9 (.731)% * (29%10%)
U = 0.0315 in-klb

As, Ug > U,, i.e., Bolt ‘B’ can absorb more energy. Hence Bolt ‘B’ should be
chosen.

% Strength = (Ug-U,)/U,=36 %

2. BENDING MOMENT:

Where, M = Bending Moment
& | = Moment of Inertia or 2" M.O.A

U= [(M2/2EI?)dx. [f y>dA

Ex: Determine the Elastic strain energy due to bending of the cantilever beam,

if the beam is subjected to a uniformly distributed load (UDL) ‘W’ & (E.I) is
constant.




X=0 | = \ x=L
::g
—Wx?2
Sol: Here, M = .
L w2x* w? L w?
= J = W frxtdx = xSl
0 2E(4)1 8EI Y0 40 EI
w213
~ U=
40 EI

Ex: Determine the Bending strain energy in the region AB of the beam

A
.i?L. i
! L ! L
M = -px
U= fL—(_pX)Z dx
0 2EI
2X3
u="=r
6EI
213
1
U=
6EI

3._ TRANSVERSE SHEAR:

U= Jff S dv

VyQg
I,,b

T =

(Beam has constant cross. area)

. Lo vy2 Q72
Ui = | T (J &dA)dx




A Q.2
f,= 2 dA

1zz"2

fove2
Ui=fL 2 dx

0 2GA

Ex:

A=bh
Q,.=(y + [h/2-y] /2) b (h/2 - y)

Q. = [b/2] [h2/4 -y*]

h2 2
b2 b’ (T—Y2> b dy

bh f
ST /pbn3\2Y—h/2 4b2
(%)

On integrating we get
f.=6/5

Ex: Determine the strain energy, where El is constant and f, = 6/5

7N
A

3 ks

Y




‘l.(' -
’ e g
r\ ’?t‘ - - - ]
\Jv
d, > »
- 1!3, = k)
\ 7 .
Yog _ LTt
\

V., - Wx

y=

Ui-o (fs.Vy*/2Ga?).dx

=6/10Ga’ o' (Wx) >
1 2, 3
Ui- (5GaA2)'W L
Now,
(Ui)s

(), = (WL/5GA) / (W2L°/40E1)

= (8EI/GA).1/L° (as E= 2G (1+p))
=2/3(a/L)>. (E/G)

Since we know that higher value of E=3G

(Ui)s 2
(Us 2. (a/L)

If L=a  (min. length of beam)

() _ 2
(U~ 5

O .
(U~ %

=> Maximum strain energy due to shear stress is only 8% of the strain energy
due to bending moment.

~ we neglect strain energy due to shear stress.




4. TORSIONAL MOMENT

2

t .dv
Ui- 111 55

Tr
From torsion equation: T = N

T.r)?
U| =III%.dAdX

T2
=162

2
dxe T da
I7

2

=1Za

.dx

(over length L)

Ui=_

Ex: A tabular shaft in figure is fixed to the wall and subjected to two torques as
shown. Calculate the strain energy stored in shaft due to this loading.

ro=80mm, G=75Gpa, r=65mm.

U=3T*L/2G)

J=—1(80)* - (65)’]

_ (4012 (075) | (15)12(0.3)
T 2475%103%36.3 2+75+103+36.3

U=233




NOTE: If a loading is applied slowly to a body, the external load tends to
deform the body. So, the loads tend to do external work Ue, as they are
displaced. This external works caused by the loads is transformed into internal
works or strain Energy Ui, which is stored in the body.

e CONSERVATION OF ENERGY :

Ue = Ui (up to elastic limit)

2
PA=5

[(NZL/ZAE) = strain energy by stress distribution
2AE

Ex: The three bar truss is subjected to a horizontal force 5N, if the cross
sectional area of each member is 0.2m?. Determine the horizontal
displacement of point B. E= 29x10°Pa

Member Length(L) Force(N) NZL
AB 2 2.88 16.59
BC 4 5.77 133.17
CA 23 5 86.6




Z N2L = 236.36

1 NZL
Now, EPA =3y AL (P=5N)
A=8.14mm

Ex: The cantilevered beam in Fig. has a rectangular cross section
and is subjected to a load P at its end. Determine the displacement of
the load. E/ is constant.

1 L F, y2dx L M? dx
_PA=f sV +f
2 0 2GA 0 2EI

_3p2 L+P2L3
" 5GA  6EI

3 P?L p?L3
Now, =P
5 GA 6EIl

3 P2L p2L3
5 G(bh)”6E[(bh?)]

3 2L2
_S_
5G” Eh?

Since E <3G, then 0.9< (%)2 hence neglect this part.

l _p2L3
2 6EI

L3
A== ans.

3EI




P
Apply real loads Py, P,, P, i

Y

e PRINCIPLE OF VIRTUAL WORK

ZPA =ZU6

A=) u.dL

DEFORMATION STRAIN ENERGY INTERNAL VIRTUAL
CAUSED BY WORK
Axial Load N fL N? p fLNnd
—dx —dx
. 2EA . EA
Shear force V Lfsy? Loy
f dx f —dx
, 2GA , GA
Bending Moment M fL M? p LmMm 4
—dx ——dx
o 2EI . EI
Torsional Moment T fL T2 p fL tTd
—dx —dx
0 2GJ 0 GJ




Ex: Determine the vertical displacement of joint C of the steel truss shown in
fig. The cross-sectional area of each member is A = 400 mm® and E = 200 GPa.

Members | n N L nNL

AB 0 100 4 0

BC 0 141.4 2.828 0

AC -141.4 |-141.4 |2.828 565.429
CD 1 200 2 400

>nNNL =965.7 KNm

1.A =965.7/200x10°

_ 965.7
200x103x400

A=12.07mm

e Methods of Virtual Forces Applied to Beam

Q d

L mM
1.A= —dx
0 EI




M = Internal moment in the beam, expressed as function of x and caused by
real loads.

E = Modulus of elasticity of the material.

| = Moment of Inertia of the X-sectional area, computed about neutral axis.
1 = External virtual load (unit) acting on the beam in the direction of A.

A = Displacement caused by the real loads acting on the beam.

m = internal virtual moment in the exam expressed as a function of x and
caused the external virtual unit load.

Lm,
1.8= [, mE—:/[dx

Ex: Determine the displacement of B on the beam. E.| = constant

W -
B S SN
P |~
= .~
L
Sol:
1 unit 1
M m= (-1) x

L mM L Wx3
A= [y g dx= Jy g dx

X wLt
. A= 2
8EI

Ex: Determine the slope at B of a beam shown in the figure:-




o

|
E -
‘_ I b ]
(a) g =
2
.li
,v ¥ 1‘
[ra=0] (1} w=—ra] (}
. 4 | e L;.
[ma=1] ("t ma e | (4
Virtual loads - Real load B
(b) (c)
Fig. 14-37
Virtual-Work Equation, The slope at B is thus:
1.8 = [ mgM/EI * dx
L L L
L L _
gocpdey,  [F-p[G)rx2jdx
EI EI
0, = —3PL?
b~ " gEl

The negative sign indicates that 6, is clockwise, that is, opposite to the
direction of the virtual couple moment shown in fig.

e Castiglione’s Theorem:

P

il
Py

Ui=U.=f (Pl, P, Ps... P Pn)
Ui+ dUi= Ui+ dui/OPi (dP,)

Ui+ dui= Ui+ %(dp|dA|) + dPiAi

_aui
I~ api




TRUSSES:

_9(IN?L)
~ AP(2AE)

ON. L
A=3N (5

BEAMS:

oM, dx

A=f0LM(5)§

Ex: Determine the vertical displacement of joint C of the steel truss shown in
fig. The cross-sectional area of each member is A = 400 mm® and E = 200 GPa.

Members N N)p-o0 L ON 1N pog, L.
ap ON
3P
AB -100 -100 4 0 |0
BC +/2.100 | -141.4 | 2.828 0o |0
AC (P+100) V2 | 141.4 | 2.828 | +/2 |565.429
CD -200-P -200 2 -1 400




"
a

200kN+p D
-

141.4kN + 1.414 P

45°
‘/\ 100 kN

—
200kN + P A

—
200kN +P K4 T
100kN + P

B
100kN + P 1100 kN

(b) (©)

Internal Forces N. The reactions at the truss supports A and D are
calculated and the results are shown in Fig. . Using the method
of joints, the N forces in each member are determined

For convenience, these results along with their partial derivatives
aN/aP are listed in tabular form. Note that since P does not actually
exist as a real load on the truss, we require P = 0.

oN oN
Memb N — NP=0 L Nl — |L
ember P ( ) <8P>
AB —100 0 —100 4 0
BC 141.4 0 141.4 2.828 0
AC —(1414 + 1414P) —-1.414 —-1414 2.828 565.7
CD 200 + P 1 200 2 400
> 9657 kN -m

Castigliano’s Second Theorem.

ON\ L 965.7kN-m
AC”_EN<8P>AE_ AE

Substituting the numerical values for A and E, we get

_ 965.7 kN +m
[400(10 %) m?] 200(10°) kN/m?
= (0.01207m = 12.1 mm

Ac,

Ans.

141.4 kN
45°(
100 kN
100 kN



154535
Rectangle

154535
Rectangle

154535
Snapshot

154535
Snapshot

154535
Snapshot

154535
Snapshot

154535
Snapshot

154535
Snapshot


Ex: A simply supported beam is loaded with a UDL ‘q’ per unit length over the
span ‘L’. Using Cast. Theorem, Find

i. Deflection at mid span
ii. Slope at one end

q/

A | — 'AB
e L i
Sol:
B
P
_ | 9.
— i et
T | S< - _;.»\
L-/},_ Lis |
' Fa : | Rg
T
ol Ry+ Ry =P +qlL
ZMB = 0
2
PXZ+q=—Ry(L) =0
L+
RA=<q 2 p)
)
\ Z
qL+p)
Re =
B ( 2
M, = Ra.X — qx*/2
M, = (gL + P).X/2 - qx*/2
2 _x/2 [for 0 <x<L/2]

dp




U = o JMx°.dx/2EI

A, = j—g = 1/El,5[M, (OM,/dp).dx

M, = (qL + P).X/2 - qx*/2 - P(x-L/2) for (L/2<x<L)

aMx _\J2 —x/2
dp

_du

A=
¢ dp

_ 1 cl/2 2 .3
A= =1, (gl x®-ax* )dx]

= — [(al’/3)-(qx'/4)] ) dx] =—— [4qLx*3qx’]

__ 1 3/q. 4
=i [4qL.L°/8-3qL"/16]

=— [2qL*-3qLY]

24E]
5ql4
<= Sgs NS
Ex:
A q
fmamsmununil
A 1 (b (aMX)d B
AT g, *\ax /™
2
qx
My = Xy — —
x = Xx ==
1t qx?
O—E XX—T xdx
0




2
ALY

ZMA=0
ql?
RBXL+Mb_T_O
M, = — %ql2 ans.

e MAXWELL’S RECIPROCAL THEOREM

Maxwell’s reciprocal work theorem states that for a linear elastic structure
subjected to two set of forces P and Q, the work done by the set P through the
displacements produced by the set Q is equal to the work done by the set Q
through the displacements produced by the set P.

This theorem has applications in structural engineering where it is used to
define influence lines and derive the boundary element method.

PROOF:

F, l . 2
e ouF,
Fig. 1

Let us consider the beam in the figure. Because of the load F; the beam
deflects an amount 61,F; at point 1 and amount §,F; at point 2.

Where 6., and §,; are the deflections at points 1 and 2 due to a unit load at

point 1.




Fig. 2
& deflection at point i due to a unit load at j.
i =place of deflection.
j= place of unit load.

Now we will formulate an expression for the work due to F;and F,.

Fig. 3
Apply the forces F; and F, simultaneously the resulting work can be written
W= yz (F]_Al +F2A2)

W= % (Fi(611F1 + 615F;) + Fo(6,1F;1 + 6,55F,))

W=7 ( 611F12+ (612"' 621) F]_Fz + 622F22) .................. (1)

DAy =61,F1+ 615, D, =8,1F1+ 65F;

Now if we apply forces one by one, we get




If we apply F, first the amount of work performed is

W, =%(F, 611F1) = ( 611F12)

Fig. 4

Next, we apply F, to the beam on which F4is already acting.

Fig. 5

The additional work resulting from the application of F,

W, = Fy( 615F) + %2(F2(625F,))

% factor is absent on the first term because F, remains constant at its full value

during the displacement. The total work due to F; and F,

W= ( 611F12+ 622F22) + 612F1F2 cessssasanss (2)




In a linear system, the work performed by two forces is independent of the

order in which the forces are applied. Hence the two works must be equal.

equating equations 1 and 2, we get,

% 611F12+ (612+ 821) FiFy + 622F22) =% ( 611F12+ 622F22) + §15F1F;

Yo 61+ 621) =01

12+ 621=261,

81, =8,

This relationship is known as Maxwell’s reciprocal theorem.




Ex:

Ex:

A

1
yza(l—x)2(21+x)
VMax = 0atx =10

Now acc. to reciprocal theorem
X.8—Py=10; X ==

Y. PnYn
X= S

Sol:
R,+ R, =P
L PL
ZszRa*E_?_O
P
R, 2
P13
0, =
16 € 1
5 — ML?2
€ 16¢€l




e ROTATING RING

Consider a thin ring rotating about its centre of gravity at “o0” as shown.
p= density of the ring.
r= mean radius of the ring.
w= angular velocity of rotation.
t=thickness.
Volume of element per unit length=r.d6.t
Centrifugal force acting on this element:
dF.= p.r.d6.t.w’r
Vertical component of this force = dF.sin®©.
Total bursting force across dia AB = foﬂ p.r.de.t. w2 r sin0d6 =2 pw?rit
If g9 is hoop stress induced,
Resisting force = 2. 0y.t.1
For equilibrium,

2 pw?rit =204t

6g= pw?r? = pv?




Ex: The thinrim of a wheel is 90 cm diameter. Neglect the effect of
spokes. How many revolutions per min may it make without the hoop
stress exceeding 140 MPa. The density is 7800 kg/m3. E=200 GPa also
find change in diameter.

Sol: (i)r=d/2=45cm =0.45m
0p < 140 MPa
pw’r’ < 140 x 10° Pa
7800 Kg/m®. (w?).(.45)°m* < 140x10° Pa
w’~ 8.8 x10*
w =2.976 x 10%*rad/s
Now, w =2mnN/60
N = 28.43x10” rev/min
(ii) 0g = Eeq
€s = 140x10° Pa / 200x10° Pa
= 0.7x10°
Now,
€s = Ad/d
Ad =0.9x0.7x10° m
Ad=0.63x10°m

Ad =0.63 mm




e ROTATING DISC

Resolving Force in the radial outward direction: -
(o+do,)(r+dr)(dB)t - (o,)r.d6.t - og.t.dr.do
Simplifying and neglecting small quantities;
(0,- 0g)dr.dB.t + do,.rd6.t
For equilibrium of the element
pr.do.dr.t.w’ + (o,- 0p)dr.d6.t + do.rd6.t = 0
pw’r’ + (0,-0g) + r(do,/dog) = 0
(0,-0¢) = -r(do,/doe) - pw’r®> -—--(a)
On account of rotationr = r+n

And r+dr = r+dr+dn

Then the circumferential strain : € = [2mt(r+n)-2nr] / 2nr = n/r




and radial strain : €, = [(r+dr+dn) — (r+dr) ]/ dr
€ =dn/dr
€ = [1/E][ 0 - vO,] = n/2
Pw’¥*+(0,-0g) + ¥do,/dy =0
0y- 0o = - ¥do,/dy - pyw’y* --—(a)
on account of rotation y->y+u
& y+dy ->y+dy+du
Then circumsential strain €, - (21 (y+u)-2my)/2ny = u/y
& radial strain €= ((y+dy+du)-(y+dy))/dy =du/dy
€o =[0e-v0,]/E =u/2
€ = [0,-pog]/E = du/dy - (c)
u = ¥[oe-poy]/E -—(b)
Diff w.r.t. r
du/dr=r/E(((11—(ry — ydor/dr)+1/E(c6 — por) ........ (d)
comparing (c) and (d)

1/E(o-no0) =r/E (% — u%) +1/E (00 — por)

=> 0, (1+)-00(1+p) = r(= — K

=> (1+p)(or—06) =r(= - (e)
Substituting (a)in (e)

d/dr (or+00) + (1 + u)(poozr)=0 ............ (f)

integrating, we get
0+00+1/2(1+9)pw?r’*=cy-------- (g)
Where c, is the constant of integration

60=c,—0,-1/2(1+9)pw?r?




Substituting in (a)
d/dr (r*o.)=car-(3+ 9)pw?r’/2

Integrating, we get,

C1 C2 3+pn 22
H#o,- + — = (—)pw’r
=2 12 8 P

c1 c2 1+3p, 2 2
HOc-— — = | 5 )Jpwr

Case 1: Solid Disc
At the centre r=0; Stresses cannot be infinite at the centre of disc; therefore
C,=0.
o= Ci/2 —{(3+W)/8} pw’r’
Oc- Ci/2 —{(1+3p)/8} pw’r?
at r=r, (outer radius). o, 0
Ca = {(3+1)/4} pw® (r2)*
0= ()pw’ {(r)’ - (1)}
0= ((3+1)/8)pw’r,’ - (1+31)/8pw’r,’
Oc- Pw’/8[(3+)ry" - (1+3p)r°]

atr=r2
_ po? 2 2
.= (T)[Z ry =—2ry ul
Note:
pw?
(oc)at (r=r2) =T (1'H)r22
Atr=0; o, o, are max.

(6dmax = (O)max= (3:;_”)[)0.)2['2




Case2: Hollow disc

0,:=(C1/2)+(co/r°)-(3+v)pw’r?/8;

0c=(C1/2)-(co/r*)-(1+3V)pw’r?/8;
Atr=r;,0,=0&
Atr=r,, 0,=0
c1=(3+v)pw?(ri°+r,°)/4
c2=-(3+v) pw’ry’ry*/8
#0,= (%)sz[rlz"'rzz'(hzrzz/ rz)_rzl

1+3v
rZ]
3+v

3+p 2r. 2. 2 2.2,2
#0O.= (T)Pw [ri+r +(r ) /r)-

Selme=( 2D Ipw? 2+ (1-v)r,7/(34V))

for o, | max , (do,/dr)=0

r=+vrir2
3+pn
Gr]max = {T}pwz(rz'rl)z
Note: Hollow disc with pin hole at the centre

As, r; >0
3+pn
Gc]max = (T)szrzz

whenr,>r, >r

2.2
Oclmax = PW°r

Ex: Determine the intensities of principle stresses in flat steel disc of uniform
thickness having a diameter of 1m & rotating at 2400 rpm. What will be the
stresses, if the disc has a central hole of 0.2m diameter?

Poisson’s ratio= 1/3 & p=7850kg/m’




Sol:
w (rad/s)=2nN/60 = 2n*2400/60 = 80m = 251.2 rad/s
Case 1: Solid disc

C; G, B+ wpw?r?
O =—+——
2 r? 8

G G (1+3Wpwir?

© 2 r? 8
o, _ceatr=
C,=0

r=0.50.=0

1
3+ =)(7850)(251.2)%(0.5)?
0=%—( +2)( ;( )2(0.5)

MN
C1 = 103. SF

MN
0; = 1033 — - .

atr=0.1m

MN (333 o
0p = 51.65— (T) (7850)(251.2)2(0.1)

MN MN
o, = 5165—2— 2.06 X (JL)—2
m m

MN
O, = 49, 59?
atr=20
6, = (6,)max = 51.65F = 0,

atr=050,=0
Case 2 : Hollow disc

ry=0.1m r,=0.5m




o,=0atr=ry;r,

_G, G (3K 205 1)
0= 2 +(0.1)2 ( 8 )poo (0.1)

_G G (Bt 2 2
0= 2 +(0.5)2 ( 8 )poo (0.5)

OR
343 2 2 2
C1=(T3> (7850)(251.2)7(0.1°+0.5%)
C;=107.21MN/m’
3‘% 2 2 2
C,= -(T> (7850)(251.2)7(0.1)°(0.59)

C,= - 0.515MN/m?

o DISC OF UNIFORM STRENGTH

o = uniform stress in radial and circumferential direction.

Volume of element = rde.t.dr

Centrifugal force acting on the element ABCD due to rotation =mw?r
=(frde.t.dr)w’r
=fde.t.dr.w’r’

Radial force on face DC =rde.t.o




Radial force on face AB=(r+dr).de.(t+dt)o

Centrifugal forces on BC and DA=t.dr.o
Resolving forces in radial direction,
Pdet.drw?’r® + (r+dr)e(t+dt)o = rde.t.c + 2 o t.dr.sinde/2

=>tPdrw?r’ + rto + rdto + drto =rto + tdro
=>tPdrw’r’* + rdto = 0

or odt/t=-Pw’rdr

Int = InA -Pw?r’/20

or t/A= e=pw?17/20

At r=0 ; t=to

t=t, e—pw2r2/20

Ex: Steam turbine is designed such that the radial and circumferential stresses
are constant throughout and are equal to 90N/mm?, when running at 400 rpm.
If the axial thickness at centre =20mm, what is the thickness at r=400mm.

Assume density of rotor =7800kg/m”>.
Sol:

o = 90N/mm? = 90MPa

w = 21/60 x 4000 = 418.67 rad/s
to=20mm =.02m

t=? At r=400mm =.4m

t = toe (P972/20)

Now X=(7800kg/m*)(418.67)*(0.4)" / 2x90x10°
X =1.215

t=(.02) (e™*")

t=5.93 mm ans.




e ROTATING LONG CYLINDERS

£, = [0,-v(0,+0.)]/E =du/dr ......... (1)
€. = [0 V(o +0)l/E=U/r e (2)
g = [0 V(0,+0)]/E werereenn. (3)

from eq. (2)

Eu =r [0, -v (0,+0))]

Diff. with respect to ‘r’

(0, — o) (1+p) =r [(doc/dr) -u((doc/dr) + (doy/dr))] ------ (4)
From eq. (2)

Ee = 0— W (0,+0.) = C;

C, = constant

6=Cy+ (0 +0y)

diff. with respect to ‘r

dol/dr = u[(do,/dr) + (do./dr)] ---- (a)

eq. (a) substitute in eq. (4)

(or—oc) = r[(1-p) (do,/dr) -p(da,/dr)] --—(5)
Also, (o,—-o0.) = (r(do,/dr) + pw’r?) ----- (6)

2

d —p

—(0p + 0.) =—w"r

rOr T o) =122

Integrating...

6, + 0= w25 4c,..eqn 7
r c™ 1-p 2 2---€(Q

Addingegqn 6and egn 7...

d -pw? 5 3-2p
20.+r—o,.== r +C
roiar T 2 2(1-2p) 2

Multiply both the side by “r”




Integrating...

c —
A

Substituting in eqn 7...

2 €3 p_ 2.2 ,1+2n

#O==—-=>-=-0T° (——

Oc=5 "2 8 (1—p.)
Case I: Solid Cylinder

O,=> ®© & o, = watthecentrei.e.r=0

Hence, C;=0, therefore,

C2 3-2
_Le pw2r2( “)

G, =
2 8 1-p

c2 142
G.=—-Lw?r? (=
2 8 11

2 e y2p2 (B2
2 Soor (1—u)
Thus,
2 2
= po7(r"r") ()
_ -2p 1+2p
#00= p0’(g ) [ -G

Note: Maximum stress occurs at the centre of the cylinder, wherer =0

3-2
Therefore, or]max = oc]max = g wzrzz ( 1_':1'

Case 2: For hollow cylinder

¢, C 3-2
Op= = +—=- P w?r? (=5
> 12 g -

r=ry;0,=0

r=ry 0,=0




Ci= —Lwlr?, 12y (=

)

—u

Co/2= 8 W (=D)()’ + (1))

1 3-2
#o, = 3 wz(_l u)["124' r22' (rlzrzz/rz) - rZ]
—H
1 3-2p 1+2v 2
#o.= - wz(—l_u)[r12+ 2+ (rr2/r? ) - 350 ]

Oy = 0-r]MaX Atr= ASER V)

_ pw? 3 -2
o-r]Max - T(

)(1'1 - 1'2)

0-C]Max atr = 'y

2
_ pw” 3-2p 2 2 _< ) 2
Gclmax = 3 (1_u)[(21‘2 +11%) 3_2n 1]

Ex: A long cylinder of radius 300mm is rotating at 4500 rpm. The density of the
material is 7800 Kg/m> & p=0.3. Calculate the maximum stress in cylinder &
draw the variation of . & o, along the radius.

Sol:
p(rw)® 3 —2u
0-r]MaX = 0-C]Max = ) ( 1— u )
4500 * 2m = 0.3
7800 * ( 20 )? 3-2%0.3
8 1-0.3

On solving we get

Gr]Max = Gc]Max = 66.74 MN/In2
2
Atr=0.3; 0, = % (0.32— 0.32) =0

6, = 3 2u>[ 1+2u] 12 — 22 .24 MN/m2




Ex: Hollow cylinder 20mm external radius and 100mm internal radius is
rotating at 300rpm , density(p) = 7800 kg/m?3 and poisson's ratio (p) = 0.3 ;
Calculate maximum stress in cylinder . Plot variation of radial and hoop

stresses?
Sol:
Given: r{=0.1m; r,=0.2m
(1) or)max
Atr=+/rlr2 =0.1414m
_ pw?3-2(0.3) _ 2
Op)max = s 103 (0.2 - 0.1)
6, )max = 3.3 N/mm?
23-2 1+2u
(2) GOclmax = "g(2r5% + 14%) = G0 ]

6. )max=27.5 N/mm?

Bl

Ca__)




e IMPACT LOADING

A prismatic linear elastic of crossectional area A and length L (negligible mass)
is hanging freely ,when a rigid weight W is allowed to fall freely from a height
on the rod as shown in fig. end of the rod contains flanges (wt. = 0kg ).
Assuming no energy loss, calculate the longitudinal extension of rod due to
impact.

Let us assume that rod deflects by an amount delta (S)

Considering conservation energy —

Initial PE of weight = strain energy stored with the elastic rod
W(h+ 8)=u

o2
2E

U=[ u dv, u= =E&*/2
£ =(6/L)

_ AE §"2
T 2L

U

AE ¢o
7 6 = W(h+ )

AL §2_\W §-Wh=0
2L

—_1 2
§= o (W £ /W2 + 2EAWh/L)

5= Ta+ |14 220
EA WL




In the above equation st =% is the static deflection or elongation of rod

when W is applied statiscally the term within the bracket denotes dynamic
amplification factor (DAF) which when applied by static deflection gives
dynamic elongation of rod

2. In the above expression, if h=0i.e. load is suddenly applied to the flange of
rod.

We get,
DAF=2 &
6 = 26st

i.e. under suddenly applied force, dynamic deflection load is twice of
static application load.

2
DAF = 1+ |1 + AEVZ
WLg

The stress developed due to this elongation assuming to be in the elastic

limit.
o=Ee=E(6/L)
w 2EAh
6= X[1+ /1 + W]
# o =o0,.DAF
#e=¢,.DAF

Ex: Object of weight w is dropped over the middle of a simply supported beam
from a height 'h'. The beam has cross-section 'A'. If h>> &st. Also keeping the
mass of beam very small obtain the expressions for max bending stresses due
to following wt.

&, = WL3/48El
sol: P.E. of W =S.E. due to bending
W(h+6) = K6%/2

K=W/&st = 48EI/L3




So K62-2W6-2Wh=0
82-286W/K-2Wh)K=0
62-26 6st -2 &st h=0

6= 8st[1+(1+2h/8st)r%]

DAF=1+./1+ 2h/8st

DAF=1+,/(2h/8st)(1 + 8st /2h)¥

DAF=1+Vv2h/6 [ for h >> 6]
0 = (O )max (1+ /2h/8st)

Ost Jmax = 16M/bh?

Ot Jmax = SWL/2AN°
Where h > depth & b > width

M o = WL /4€AR?

And 8 = WL/48el
8 = WL3/4ebh®

8. = WL/4eAnh®

Omax= / 18Weh/AL




® UNSYMMETRIC BEAM BENDING

Bending about both principal axis:

=

Assuming elastic behaviour of the matiral super-position of stresses caused by
myand m, is the solution of the problem

G .= -MY/l, + MZ/l,
tanf = I;/ly (tana)

for neutral axis: 0,=0

I
tan ﬂ=£ tana
f:angle made by NA with Z axis

¢ Unsymmetric Bending of beam

1. The beam does not possess any plane of symmetry.

2. The beam posses a plane of symmetry but that axis of bending
moment is not normal to the plane of symmetry.




- N Differential area element
Neutral / dA at a distance P from
Axis Neutral Axis

v
€ !

N, are the principal axis of area moment of inertia through the centroid.
n

A

NN

3
o o

P = AB = AF - BF




P =AF-DE
P = ADcos¢-DCsing

P =ncos¢-&sing
Exxz'P/p

Axial force on the differential element area is ;
dF, = o,dA = Ee,, dA

dF.=-E(ncosd-Esind)dA/p

Integrating, we get the resultant force N, acting on the beam cross-section.

N, = — gﬁ(ncosCD—EsinG))dA =0

as [[andA=0 & [[,&dA=0

[ndF, =HA%(n2cosG)—n§sinG))dA = -Mg=-M

(E cos®)ffan"dA - (%sinCD)II AN€dA =M
([fan€dA =0, n & & being principal axis)
(E cosQ)lg =M, Also

[€dA== UA%(ncosqa-asinqa)dA =M, =0

> (ZSind) Iyy-o

- Sing=0

So, $=0
C Neutral Axis Coincides with axis about which
moment is acting.

71




And, (c..)()(='B
p

5 gy = 0 cos<1>F—) £ sing)

(Using p=1cosd — &sind)

9<c-xx='E (¢ =0)




